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The purpose of this theoretical paper is to synthesize evidence and theory at the intersection of
data literacy and science education and propose a model describing the role of data literacy in
conceptual change: The Data Literacy for Conceptual Change (DLCC) model. The DLCC
positions data literacy skills identified in the mathematics education literature in terms of models
of conceptual change. Notably, we elaborate on key critical data literacy skills that serve to help
students make personal meaning of data, and account for the role of affective dimensions (e.g.,
motivation, emotion, and beliefs) that promote scientific conceptual change. Incorporating
affective pedagogical goals from mathematics education, which emphasize the emotional
dimensions of learning about issues of injustice, the DLCC model adapts such goals to support
students’ emotional processing of data, with specific applications for climate change learning.
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Now more than ever, people need to be skeptical of the information that they encounter
online. Unregulated, self-authored content is being published and circulated online at an
alarming rate, a large fraction of which contains misleading or incorrect statistical information
(Aimeur et al., 2023; Kata, 2012; Treen et al., 2020). Internet searches for controversial science
topics like vaccinations and climate change reveal millions of articles, and about 45% of which
include misinformation (Kortum et al., 2008; Treen et al., 2020)—and much of this incorrect
information relies on misleading data. Additionally, when learners encounter conflicting or
alarming data about pressing issues like climate change, emotional responses such as anger,
worry, or hopelessness are common (Herrick et al., 2025a). These emotions can intensify if
learners collaborate in small groups, underscoring the need for explicit socioemotional regulation
strategies (Lobczowski et al., 2021b) to sustain constructive engagement with complex data.

Numerical data (e.g., statistics) and data visualizations found in the news are powerful tools
for conceptual change, whether that change be for better or for worse. On the one hand,
presenting people with data on topics such as climate change can shift their attitudes, beliefs, and
misconceptions to be more aligned with those of scientists (Ranney & Clark, 2016; Thacker,
2023, 2024; Thacker & Sinatra, 2022). On the other hand, presenting students with misleading
statistical information can shift their scientifically correct conceptions and attitudes to be less
aligned with those of scientists (Ranney & Clark, 2016). Taken as a whole, this research suggests
that data can be used as a catalyst for conceptual change, though students require unprecedented
levels of data literacy to identify and make sense of trustworthy information. If left unaddressed,
the emotions evoked by this complexity—such as fear, anxiety, or hopelessness—can limit
learners’ ability to reason deeply and even lead them to reject scientific explanations (Sinatra &
Hofer, 2021). Recent studies in science education have demonstrated that acknowledging and
guiding these emotional responses from hopelessness or anxiety toward constructive hope can
foster deeper processing of data (Herrick, 2023; Herrick et al., 2022; Herrick et al., 2025a).
Additionally, research in socioemotional regulation (Lobczowski et al., 2021b) points to the
importance of supporting students not just cognitively but also emotionally, particularly when



data evoke strong feelings or highlight local injustices. This underscores why it is essential to
consider not only the cognitive but also the emotional dimensions when learning from data.

The purpose of this theoretical paper is to synthesize evidence and theory at the intersection
of data literacy and science education and propose a model describing the role of data literacy in
conceptual change: The Data Literacy for Conceptual Change (DLCC) model. The DLCC
positions statistical literacy skills identified in the mathematics education literature in terms of
models of conceptual change. Notably, we elaborate on key critical data literacy skills that serve
to help students make personal meaning of data, and account for the role of affective dimensions
(e.g., motivation, emotion, and beliefs) that are crucial to consider when learning about issues of
injustice and for promoting conceptual change. The DLCC model adapts such goals to support
students’ emotional processing of data, with special emphasis on applications for climate change
teaching learning (Herrick et al., 2025a). Specifically, the goals of this paper are:

1. Provide a comprehensive overview of conceptualizations of conceptual change and how
people revise their science-specific conceptions based on data and data visualizations.
This includes processing numbers, visualizations, and data-specific evidence and
negotiating the plausibility of multiple scientific claims, and conceptual change.

2. Reconcile these conceptual change processes with the literature on data-literacy skills
required to make meaning of data which includes consideration of data properties and
data pre-processing factors.

3. Highlight evidence-based strategies for promoting deep engagement with data to enhance
scientific learning, with a focus on applications for promoting climate change learning.

4. Discuss principles to guide future scholarship and future areas of research on the topic of
data literacy for conceptual change; including how explicit attention to students’
emotional pathways (Herrick et al., 2025a) during group socioemotional regulation
(Lobczowski et al., 2021b) can enhance or impede engagement with data.

To frame how relevant data literacy skills can support science learning, we integrate theories
of Conceptual Change, Magnitude Knowledge, and Data Visualization Literacy. In addition to
these theories, we draw on recent work examining students’ emotional processes around data
depicting climate change and socio emotional regulation strategies in collaborative learning.
These studies highlight how emotions emerge, are shared, and can be guided toward productive
data engagement, which are pivotal considerations for conceptual change around socioscientific
topics in classroom settings.

Conceptual Change

When individuals encounter data or data visualizations in the news or online that conflict
with their prior conceptions,! conceptual change may occur. Conceptual change represents a
particular kind of learning that occurs when new information conflicts with a learners’
background knowledge, leading to a restructuring of conceptual knowledge (Dole & Sinatra
1998; Murphy & Mason, 2006). Conceptual change researchers tend to describe concepts as
either consistent or inconsistent with the understanding of experts and many define conceptual
change as a correction of inconsistent conceptions, or misconceptions. For example, if an
individual holds the misconception that scientists believe that humans are not responsible for

A concept can be defined as “units of mental representation” such as the notion of “object” or “climate change”
(Carey, 2009). Further, concepts are constructed from prior knowledge and experiences. Beliefs, in contrast, are
structures of concepts that are taken to be true (Carey, 2009).



climate change and reads a statement that “97% of scientists agree that climate change is caused
by humans,” then there might be potential for the learner to question their misconceptions and
shift them to be more consistent with scientists. In this way, numbers have the potential to
instigate conceptual change, though there are many additional contributing factors and processes
illustrated across prominent models of conceptual change theory. Recent scholarship suggests
that these factors include not only individual reactions (e.g., surprise), collective emotional
responses in group contexts (e.g., collective concern), and the need to manage socioemotional
dynamics when new data contradicts learners’ prior conceptions (Herrick et al., 2025a;
Lobczowski et al., 2021Db).

Developmental Models of Conceptual Change

Many perspectives exist regarding the nature of conceptual change including those from
developmental psychology (Carey, 2009), science education (Posner et al., 1982; Strike &
Posner, 1992), and educational psychology (Dole & Sinatra, 1998; Murphy & Mason, 2006;
Sinatra, 2005). For example, the Framework approach is a developmental model of conceptual
change postulates that new information is filtered through a unified body of knowledge called a
“framework theory.” When new information is not compatible with that framework, it may get
neglected or distorted, leading to misconceptions or synthetic conceptions that are developed as
new information is added, while the background assumptions of the framework theory are
maintained (Vamvakoussi & Vosniadou, 2004, 2007, 2010; Vosniadou & Skopeliti, 2014).
Another classic conceptual change model was posited by Posner et al., (1982) which posits that
conceptual change occurs in a manner similar to scientific revolutions (Kuhn, 1970). Learners
may initially hold conceptions that are consistent with earlier scientific ideas (e.g., that the earth
is flat) but conceptual change may occur if the learner is dissatisfied with their existing
conception, and they find a new conception to be intelligible, plausible, and fruitful for leading to
new insights (Posner et al., 1982). If these conditions are met, conceptual change may occur.
Warm Models of Conceptual Change

Although these earlier models articulate cognitive factors and rational processes involved in
conceptual change, they do not include motivational, affective, or contextual factors (Pintrich et
al., 1993; Sinatra, 2005). Motivational and affective factors such as emotion, self-efficacy,
interest, attitudes, and goal setting—termed warm constructs (Pintrich et al., 1993; Sinatra,
2005)—have come to characterize modern approaches in educational psychology. These
constructs are important because they are closely linked with student engagement, learning,
achievement, and conceptual change (e.g., Linnenbrink-Garcia & Patall, 2015; Sinatra, 2005).
Furthermore, when learners work in groups, emotional responses can escalate or subside
collectively (Lobczowski et al., 2021a), shaping whether they process deeply or disengage.
Recent work points to “emotional pathways” that emerge in classroom settings (Herrick et al.,
2025a), through which students’ initial anxiety or skepticism about local data depicted climate
issues can be processed into curiosity and hope, reinforcing the “warm” dimensions of
conceptual change.

For example, Dole & Sinatra’s (1998) cognitive reconstruction of knowledge model (CRKM)
of conceptual change takes into account information characteristics (e.g., whether soil data is
comprehensible, compelling, and relevant) and learner characteristics (e.g., their beliefs,
motivation, and emotions), which interact to determine students’ levels of cognitive engagement.
Higher levels of engagement, in concert with people’s shifting motivational and emotional states,
then predicts more serious consideration (or reconsiderations) of whether scientific ideas are
plausible (Lombardi et al., 2016). More explicit plausibility considerations then predict a higher



likelihood that people reconsider their stance and exchange scientifically accepted ideas with
their prior conceptions (i.e., experience conceptual change). Guiding students in a classroom
setting to name and interpret the emotions arising from new data could help sustain an explicit
plausibility appraisal, rather than letting anxiety or confusion derail them. These models frame
conceptual change as a process that involves motivation, beliefs, and motivation.

Indeed, theory and evidence suggest that motivational factors such as a learners’ individual
interest in STEM (a stable disposition), their situated interest (interest triggered by the
environment), and utility value (perceived utility of learned information) are important process
mechanisms involved in the use of interventions that support learning and conceptual change
(Hidi & Renninger, 2006; Hulleman & Harackiewicz, 2021; Hulleman et al., 2010; Seyranian et
al., 2023). Belief factors, such as epistemic dispositions—people’s relatively stable beliefs about
knowledge and processes of knowing—are also thought to predict explicit engagement with new
claims (Lombardi et al., 2016; Richter & Maier, 2017; Stanovich & West, 1997), and potential
for conceptual change (Emlen Metz et al., 2020; Thacker, 2023, 2024; Thacker & Sinatra, 2022).
Emotional factors are also hypothesized to direct learners’ explicit attention to plausibility
appraisals (Lombardi et al., 2016); for example, epistemic emotions—emotions that arise during
learning, such as surprise and curiosity—can drive attention and mediate motivational, affective,
and learning processes (e.g., Jacobson et al., 2021; Linnenbrink, 2007; Muis et al., 2018; Thacker
et al., 2020). As such, the warm models of conceptual change (Dole & Sinatra, 1998; Lombardi
et al., 2016) assume that emotion, motivation, epistemic dispositions are mechanisms that
support conceptual change. Further, group-level socioemotional regulation can sustain or
amplify these mechanisms (Lobczowski et al., 2021b). For example, if a group collectively
reappraisses frustrations about complex climate data as a shared challenge, individuals may
remain more motivated to reconcile discrepancies and engage in deeper conceptual analysis.
Such findings align with the propositions that warm constructs, when managed collectively, can
drive more robust conceptual change.

Reconciling Conceptual Change with Data Literacy Frameworks
Conceptual Change from Quantitative Data

Across all models discussed so far, novel information catalyzes cognitive, affective, and
motivational processes that increase potential for conceptual change. How might things change
when that information is quantitative? Are there particular challenges people encounter when
evaluating and interpreting quantitative data and data visualizations? Theory on magnitude
knowledge and numerically driven inferencing suggests that, indeed, some people may require
support in making sense of numbers they are presented with, and that emphasizing specific data
literacy skills may facilitate sensemaking processes.

Magnitude Knowledge. Making meaning of number magnitudes is considered to be a core
competency in mathematics and science and involves several skills that develop over time
(Booth & Siegler, 2006; Cheuk, 2012; Sasanguie et al., 2012; Siegler & Booth, 2004; Siegler &
Opfer, 2003). Siegler’s (2016) Integrated Theory of Numerical Development provides an
explanation for how this development occurs, positing that people develop accurate
understandings of number magnitudes and their relationships as they connect numbers (e.g.,
representing rising temperatures) to the things that those numbers refer to (e.g., global climate
change). As learners develop, they learn new ways to make meaning of numbers by connecting
and comparing them to other numbers, ideas, and representations through processes of
association and analogy, both of which are activities that are considered crucial for both
mathematical and scientific learning (Siegler, 2016). Yet, while this theory offers useful insight



into how people coordinate meaning and number, one consideration left out of this perspective is
when real-world magnitudes refer to socio-political issues. For example, what happens when
magnitudes point to real-world issues, such as disproportionate access to ecosystem services
across an urban landscape? We seek to develop a model that incorporates learners’ experiences
of strong emotions that can influence how they incorporate new numerical insights. An initial
step in this direction is to account for the role of learners’ attitudes and beliefs.

Numerically-Driven Inferencing. Numerically-driven inferencing (NDI) is a framework of
conceptual change that investigates how peoples’ understanding of numerical information is
connected to their knowledge, attitudes, and beliefs about larger issues (Ranney et al., 2001;
Thagard, 1989). Rather than asking someone their stance on particular issues, one would ask
what they would prefer the numbers to be. Numbers are thought to be the “tip of the iceberg” in a
person’s thinking, and are connected with beliefs, attitudes, and conceptions in such a way to
bring “coherency” to their worldview (Ranney & Thagard, 1988; Thagard, 1989). NDI
operationalizes conceptual discrepancies in terms of the differences between estimates of
numbers and their actual values and conceptual change in terms of changes observed in
individuals’ re-estimates and number preferences after reading new information (Ranney, 2001;
Ranney & Thagard, 1988). According to NDI, numerical evidence that is critical, germane, and
credible will catalyze conceptual change (Ranney et al., 2001; Ranney & Thagard, 1988). NDI
also posits that the emotion of surprise plays a central role in learning from novel statistical
information, it is elicited when an individual encounters discrepant information and is thought to
lead to questioning and discovery (Munnich et al., 2007; Thagard, 2005). Beyond individual
surprise, evidence shows that groups may collectively navigate or dismiss surprising statistics
depending on their ability to co-regulate emotions (Lobczowski et al., 2021a; Vea, 2020),
suggesting that NDI processes might be amplified or stalled by group-level emotional dynamics.

NDI and Numerical Development theories have some commonalities with the CRKM. They
assume that conceptual change is initiated with exposure to discrepant information, leading to
revision of knowledge and beliefs. The models also assume that knowledge, attitudes, and beliefs
are interconnected, and in the case of NDI, incorporates emotion (surprise) and message
characteristics. However, unlike the CRKM, the NDI framework and other models leave out
important learner characteristics (e.g., motivation and engagement) and message characteristics
(e.g., plausibility and comprehensibility). It is precisely these properties that we believe deserve
attention. Indeed, we believe that understanding how people make sense of quantitative data
requires considering the confluence of motivational, emotional, and cognitive properties—while
at the same time considering the particularities of the data that they are learning from.
Data Literacy Models (and What Conceptual Change Models can Gain From Them)

We believe that literature on data literacy and statistical literacy offer strengths for inclusion
in an integrated model of data literacy for conceptual change. Though there is no consensus on a
definition, the term “data literacy” can be defined as the statistical competencies, methods, and
techniques that facilitate decision-making (Gould, 2017). Because decision-making with data can
be complex, data literacy frameworks often include many interrelated core competencies that
range between about 5 to 20 different categories. Such data literacy frameworks often include
competencies such as understanding, acquiring, reading, interpreting, evaluating, managing,
visualizing, and using data (Borner et al., 2019; Carlson & Johnston, 2014; Kim et al., 2023;
Prado & Marzal, 2013; Ridsdale et al., 2015), which are critical for driving advancement and
insight in fields of science more broadly (Qiao et al., 2024). Prompting students to express how
the data makes them feel can open emotional pathways that lead to an individual or collective



openness to deeper data analysis and processing (Herrick et al., 2025a, Herrick et al., 2023).

Research on learning with data visualizations also offers ideas that may improve conceptual
change models. Advances in the study of visualizations for STEM learning suggest that imagery
has potential for helping students to ground abstract concepts in perceptions of scientific
representations (Schwartz & Hiezer, 2006). There are a number of properties of data
visualizations that are related to their efficacy for learning and communicating science content.
For example, according to the Data Visualization Literacy Framework (DVL-FW), different
types of visualizations can be designed to fulfill information needs of the learner, and each
visualization type requires specific skills for interpreting them (Borner et al., 2019). According to
this framework, a central process required to interpret data from visualizations is translating
relevant problems of interest into problems of data. That is, before acquiring, analyzing, and
visualizing data, individuals must first understand how the data relates to a relevant situation. As
such, to improve students’ interpretation of data visualizations, they may need support in
translating real-world situations and problems into data. However, at the same time, research also
suggests that data visualizations revealing local phenomena can evoke anger or worry within
groups which in turn influences how students scrutinize or accept the underlying evidence (e.g.,
Phillip et al., 2016).

In sum, the data literacy skills identified in the literature offer important nuances and
affective considerations that might be integrated into warmer models of conceptual change.
Specifically, when considering the comprehensibility of data, data-literacy research offers
specific data interpretation skills and critical literacy skills that might be applied to initially
interpret them. For example, some models consider key properties of data and/or how it is
visualized (such as data scales, analyses, graphic symbols, and how variables are visualized,
Borner et al., 2019; Shaw & Hoeffner, 2002) and the mathematical skills learners must acquire to
comprehend them (such as proportional reasoning, understanding of conventions of diagrams,
Borner et al., 2019; Cromley et al., 2013; Shaw & Hoeftner, 2002; Vahey et al., 2012). An
implication of this research is that it offers useful principles to take into account when presenting
data to support student comprehension of data and data visualizations—such as, by reducing
working memory demands, avoiding three dimensional graphs, using multiple formats to
communicate data, and helping craft a narrative around what the data communicates.

While these models offer useful tools to support comprehension, other models of data
literacy offer more in the way of promoting critical data literacy skills. For example, Rubel et al.
(2021) identify three key skills needed to critically read properties of data: formatting
(questioning what and how data is quantified), framing (questioning relationships depicted and
visualized), and narrating (questioning the stories authors tell). Other models, such as Weiland
(2017) consider both critical reading of data and critical writing of data. Critical writing of data
centralizes student agency and attends to critical statistical literacies such as to encourage
students to identify untold stories, statistically investigate and resolve sociopolitical injustices,
and use statistical investigations when communicating and arguing efforts to broad audiences for
a more just world. Integrating emotional processing into these critical readings can further
empower students to question, react to, and potentially reframe data narratives that evoke strong
affect, ensuring that frustration or anger become opportunities for more rigorous engagement
with data. Focusing on emotional awareness can help educators anticipate and guide the affective
responses that arise when students confront unsettling or surprising data (Ojala, 2023).

In sum, while there are many useful data literacy and critical data literacy frameworks that
exist in the literature (e.g., Qiao et al., 2024; Rubel et al., 2021; Vahey et al., 2012; Weiland,



2017), currently none take into account motivational or affective constructs that are crucial in
understanding the unique challenge of preparing students with skills needed to make sense of
data related to socio-scientific topics such as climate change. Conversely, educational
psychology models for socio-scientific learning (e.g., Dole & Sinatra, 1998; Lombardi et al.,
2016; Sinatra & Hofer, 2021) rarely incorporate data literacy or the justice-centered perspectives
crucial for understanding climate impacts (Morales-Doyle, 2024). Our theory of Data Literacy
for Conceptual Change attempts to reconcile these perspectives by foregrounding both
individual-level and collective socioemotional processes that drive whether or not learners
ultimately revise their prior conceptions.

The Data Literacy for Conceptual Change Model (DLCC)

The DLCC positions data literacy skills identified in the mathematics education literature in
terms of models of scientific conceptual change. Notably, our model explicitly assumes that key
critical data literacy skills (e.g., such as proportional reasoning, formatting, framing, reading,
writing, and narrating data context and visualizations; Rubel et al., 2021; Vahey et al., 2012;
Weiland, 2017) serve to help students comprehend and make personal meaning of data, and also
intersect with the affective dimensions (e.g., motivation, emotion, and beliefs) that promote
conceptual change at the individual level. Incorporating affective pedagogical goals from
mathematics education (Kokka, 2022), which emphasize the emotional dimensions of learning
about issues of injustice, the DLCC model adapts such goals for science learning with special
emphasis on supporting students’ emotional processing of climate data (Herrick et al., 2025a).

Namely, our model assumes that the format of data and data visualizations predict learners’
initial framing and perceptions of the data (in terms of its validity, coherency, compellingness,
and comprehensibility), which then predicts learners’ processing of the plausibility of scientific
ideas, claims, and explanations represented by the data (including how emotional reactions can
be co-regulated within groups), and ultimately learners’ negotiation of whether to adopt such
scientific conceptions at the individual level. More specifically, we assume that plausibility
appraisals are more thoughtful and explicit depending on learners’ motivational and affective
states, and more explicit processing is associated with higher likelihood for conceptual change.
Lastly, we propose that group-level discourse can prompt students to negotiate and reconsider
the plausibility of scientific claims, engage in critical re-readings of scientific ideas, or even re-
write data and narratives. In this way, the DLCC acknowledges that conceptual change emerges
when individual cognitive conflict and motivational factors converge with collaborative
emotional support and critical data literacy skills. The model pertains across socio-scientific
topics, with special applications of data literacy for climate change teaching and learning, given
that the evidence for this model stems from this topic which we elaborate on in the next section.

Figure 1: An Illustration of the Data Literacy for Conceptual Change (DLCC) Model
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Evidence for the DLCC with Applications for Climate Change Learning

Evidence supports relationships posited in the DLCC. For example, engagement with climate
change numbers in game-based learning settings can support conceptual change and highlight
relevant relationships posited in the DLCC. Namely, prompting secondary and undergraduate
students randomly assigned to estimate key climate change numbers before being shown the
consensus value improved their climate change knowledge compared with a control group by
about a third of a standard deviation (Ranney & Clark, 2016; Thacker 2023, 2024; Thacker &
Sinatra, 2022). Additional qualitative and experimental evidence demonstrates that these learning
outcomes are bolstered with targeted support of proportional reasoning strategies, conventions
around interpreting number-line data visualizations, and compelling and contextualized data
narratives (Thacker, 2023; Thacker et al., 2024). Further, these efforts to support data
comprehensibility, validity, and compellingness which promoted student learning were found to
be moderated or mediated by learners’ adaptive beliefs about knowledge, positive emotion, and
motivational factors (Thacker, 2023, 2024; Thacker et al., 2024; Thacker et al., 2025). These
studies reveal the importance of attending to both mathematical and scientific learning properties
when designing instruction and begin to illustrate the benefits of intentionally mitigating
negative emotion and climate hopelessness when discussing climate change (see Stoknes, 2015).

Indeed, explicit attention to learners’ emotional responses can bolster students’ engagement
with climate-related data and support conceptual change. For example, in Herrick et al. (2025a),
teachers led brief, repeated Community Science Data Talks (CSDTs)—a pedagogical tool that
integrates traditional data literacy skills with affective processes around locally relevant climate
impact data (e.g., data depicting disproportionate tree canopy coverage in a city) and prompt
students to share how the data made them feel. This invitation opened “emotional pathways” that
encouraged learners to share personal experiences, express surprise or concern, and collectively
process emotions toward curiosity and constructive hope around the implications of the data they
examined (Herrick et al., 2025a, 2025¢). On a practical level, CSDTs demonstrate two pivotal
strategies for data literacy around local socio-scientific topics (1) structuring small, regular,
open-ended data-discussion routines that highlight learners’ sense of place and (2) prompting
students to narrate their emotional responses to support the technical elements of their data
interpretation. By weaving affective dialogue into data literacy instruction, teachers create a
shared sense of urgency and curiosity around local climate impacts, which support the DLCC
model’s emphasis on individual learners revisiting and revising their prior conceptions.

Principles For Future Scholarship Areas of Research

While the empirical research is relatively conclusive in demonstrating that levers improving
students’ comprehension of data is linked to motivational and learning gains, there are several
factors that need more research. Namely, educational psychology and mathematics and science
education have complementary strengths that could be leveraged more effectively through cross-
pollination of ideas and methods. On the one hand, data literacy research can more frequently
consider affective and socioemotional dimensions of student learning (emotion, motivation,
attitude), including how group co-regulation of emotion fosters or hinders deeper analysis of data
at the individual level. On the other hand, conceptual change research could do a better job of
incorporating critical data activities, specific skills needed to make sense of data, and especially
in data depicting localized socioscientific topics. Ultimately, increased collaboration and
partnership among educational psychology, math, and science education research would only
lead to improved integration of data-literacy research and affective dimensions of learning that
promote conceptual change.
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