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The purpose of this theoretical paper is to synthesize evidence and theory at the intersection of 
data literacy and science education and propose a model describing the role of data literacy in 
conceptual change: The Data Literacy for Conceptual Change (DLCC) model. The DLCC 
positions data literacy skills identified in the mathematics education literature in terms of models 
of conceptual change. Notably, we elaborate on key critical data literacy skills that serve to help 
students make personal meaning of data, and account for the role of affective dimensions (e.g., 
motivation, emotion, and beliefs) that promote scientific conceptual change. Incorporating 
affective pedagogical goals from mathematics education, which emphasize the emotional 
dimensions of learning about issues of injustice, the DLCC model adapts such goals to support 
students’ emotional processing of data, with specific applications for climate change learning. 
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Now more than ever, people need to be skeptical of the information that they encounter 
online. Unregulated, self-authored content is being published and circulated online at an 
alarming rate, a large fraction of which contains misleading or incorrect statistical information 
(Aïmeur et al., 2023; Kata, 2012; Treen et al., 2020). Internet searches for controversial science 
topics like vaccinations and climate change reveal millions of articles, and about 45% of which 
include misinformation (Kortum et al., 2008; Treen et al., 2020)—and much of this incorrect 
information relies on misleading data. Additionally, when learners encounter conflicting or 
alarming data about pressing issues like climate change, emotional responses such as anger, 
worry, or hopelessness are common (Herrick et al., 2025a). These emotions can intensify if 
learners collaborate in small groups, underscoring the need for explicit socioemotional regulation 
strategies (Lobczowski et al., 2021b) to sustain constructive engagement with complex data. 

Numerical data (e.g., statistics) and data visualizations found in the news are powerful tools 
for conceptual change, whether that change be for better or for worse. On the one hand, 
presenting people with data on topics such as climate change can shift their attitudes, beliefs, and 
misconceptions to be more aligned with those of scientists (Ranney & Clark, 2016; Thacker, 
2023, 2024; Thacker & Sinatra, 2022). On the other hand, presenting students with misleading 
statistical information can shift their scientifically correct conceptions and attitudes to be less 
aligned with those of scientists (Ranney & Clark, 2016). Taken as a whole, this research suggests 
that data can be used as a catalyst for conceptual change, though students require unprecedented 
levels of data literacy to identify and make sense of trustworthy information. If left unaddressed, 
the emotions evoked by this complexity—such as fear, anxiety, or hopelessness—can limit 
learners’ ability to reason deeply and even lead them to reject scientific explanations (Sinatra & 
Hofer, 2021). Recent studies in science education have demonstrated that acknowledging and 
guiding these emotional responses from hopelessness or anxiety toward constructive hope can 
foster deeper processing of data (Herrick, 2023; Herrick et al., 2022; Herrick et al., 2025a). 
Additionally, research in socioemotional regulation (Lobczowski et al., 2021b) points to the 
importance of supporting students not just cognitively but also emotionally, particularly when 
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data evoke strong feelings or highlight local injustices. This underscores why it is essential to 
consider not only the cognitive but also the emotional dimensions when learning from data. 

The purpose of this theoretical paper is to synthesize evidence and theory at the intersection 
of data literacy and science education and propose a model describing the role of data literacy in 
conceptual change: The Data Literacy for Conceptual Change (DLCC) model. The DLCC 
positions statistical literacy skills identified in the mathematics education literature in terms of 
models of conceptual change. Notably, we elaborate on key critical data literacy skills that serve 
to help students make personal meaning of data, and account for the role of affective dimensions 
(e.g., motivation, emotion, and beliefs) that are crucial to consider when learning about issues of 
injustice and for promoting conceptual change. The DLCC model adapts such goals to support 
students’ emotional processing of data, with special emphasis on applications for climate change 
teaching learning (Herrick et al., 2025a). Specifically, the goals of this paper are: 

1. Provide a comprehensive overview of conceptualizations of conceptual change and how 
people revise their science-specific conceptions based on data and data visualizations. 
This includes processing numbers, visualizations, and data-specific evidence and 
negotiating the plausibility of multiple scientific claims, and conceptual change. 

2. Reconcile these conceptual change processes with the literature on data-literacy skills 
required to make meaning of data which includes consideration of data properties and 
data pre-processing factors.  

3. Highlight evidence-based strategies for promoting deep engagement with data to enhance 
scientific learning, with a focus on applications for promoting climate change learning.  

4. Discuss principles to guide future scholarship and future areas of research on the topic of 
data literacy for conceptual change; including how explicit attention to students’ 
emotional pathways (Herrick et al., 2025a) during group socioemotional regulation 
(Lobczowski et al., 2021b) can enhance or impede engagement with data.  

To frame how relevant data literacy skills can support science learning, we integrate theories 
of Conceptual Change, Magnitude Knowledge, and Data Visualization Literacy. In addition to 
these theories, we draw on recent work examining students’ emotional processes around data 
depicting climate change and socio emotional regulation strategies in collaborative learning. 
These studies highlight how emotions emerge, are shared, and can be guided toward productive 
data engagement, which are pivotal considerations for conceptual change around socioscientific 
topics in classroom settings.  

Conceptual Change 
When individuals encounter data or data visualizations in the news or online that conflict 

with their prior conceptions,1 conceptual change may occur. Conceptual change represents a 
particular kind of learning that occurs when new information conflicts with a learners’ 
background knowledge, leading to a restructuring of conceptual knowledge (Dole & Sinatra 
1998; Murphy & Mason, 2006). Conceptual change researchers tend to describe concepts as 
either consistent or inconsistent with the understanding of experts and many define conceptual 
change as a correction of inconsistent conceptions, or misconceptions. For example, if an 
individual holds the misconception that scientists believe that humans are not responsible for 

 
1A concept can be defined as “units of mental representation” such as the notion of “object” or “climate change” 
(Carey, 2009). Further, concepts are constructed from prior knowledge and experiences. Beliefs, in contrast, are 
structures of concepts that are taken to be true (Carey, 2009). 
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climate change and reads a statement that “97% of scientists agree that climate change is caused 
by humans,” then there might be potential for the learner to question their misconceptions and 
shift them to be more consistent with scientists. In this way, numbers have the potential to 
instigate conceptual change, though there are many additional contributing factors and processes 
illustrated across prominent models of conceptual change theory. Recent scholarship suggests 
that these factors include not only individual reactions (e.g., surprise), collective emotional 
responses in group contexts (e.g., collective concern), and the need to manage socioemotional 
dynamics when new data contradicts learners’ prior conceptions (Herrick et al., 2025a; 
Lobczowski et al., 2021b).  
Developmental Models of Conceptual Change 

Many perspectives exist regarding the nature of conceptual change including those from 
developmental psychology (Carey, 2009), science education (Posner et al., 1982; Strike & 
Posner, 1992), and educational psychology (Dole & Sinatra, 1998; Murphy & Mason, 2006; 
Sinatra, 2005). For example, the Framework approach is a developmental model of conceptual 
change postulates that new information is filtered through a unified body of knowledge called a 
“framework theory.” When new information is not compatible with that framework, it may get 
neglected or distorted, leading to misconceptions or synthetic conceptions that are developed as 
new information is added, while the background assumptions of the framework theory are 
maintained (Vamvakoussi & Vosniadou, 2004, 2007, 2010; Vosniadou & Skopeliti, 2014). 
Another classic conceptual change model was posited by Posner et al., (1982) which posits that 
conceptual change occurs in a manner similar to scientific revolutions (Kuhn, 1970). Learners 
may initially hold conceptions that are consistent with earlier scientific ideas (e.g., that the earth 
is flat) but conceptual change may occur if the learner is dissatisfied with their existing 
conception, and they find a new conception to be intelligible, plausible, and fruitful for leading to 
new insights (Posner et al., 1982). If these conditions are met, conceptual change may occur.  
Warm Models of Conceptual Change  

Although these earlier models articulate cognitive factors and rational processes involved in 
conceptual change, they do not include motivational, affective, or contextual factors (Pintrich et 
al., 1993; Sinatra, 2005). Motivational and affective factors such as emotion, self-efficacy, 
interest, attitudes, and goal setting—termed warm constructs (Pintrich et al., 1993; Sinatra, 
2005)—have come to characterize modern approaches in educational psychology. These 
constructs are important because they are closely linked with student engagement, learning, 
achievement, and conceptual change (e.g., Linnenbrink-Garcia & Patall, 2015; Sinatra, 2005). 
Furthermore, when learners work in groups, emotional responses can escalate or subside 
collectively (Lobczowski et al., 2021a), shaping whether they process deeply or disengage. 
Recent work points to “emotional pathways” that emerge in classroom settings (Herrick et al., 
2025a), through which students’ initial anxiety or skepticism about local data depicted climate 
issues can be processed into curiosity and hope, reinforcing the “warm” dimensions of 
conceptual change.  

For example, Dole & Sinatra’s (1998) cognitive reconstruction of knowledge model (CRKM) 
of conceptual change takes into account information characteristics (e.g., whether soil data is 
comprehensible, compelling, and relevant) and learner characteristics (e.g., their beliefs, 
motivation, and emotions), which interact to determine students’ levels of cognitive engagement. 
Higher levels of engagement, in concert with people’s shifting motivational and emotional states, 
then predicts more serious consideration (or reconsiderations) of whether scientific ideas are 
plausible (Lombardi et al., 2016). More explicit plausibility considerations then predict a higher 
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likelihood that people reconsider their stance and exchange scientifically accepted ideas with 
their prior conceptions (i.e., experience conceptual change). Guiding students in a classroom 
setting to name and interpret the emotions arising from new data could help sustain an explicit 
plausibility appraisal, rather than letting anxiety or confusion derail them. These models frame 
conceptual change as a process that involves motivation, beliefs, and motivation. 

Indeed, theory and evidence suggest that motivational factors such as a learners’ individual 
interest in STEM (a stable disposition), their situated interest (interest triggered by the 
environment), and utility value (perceived utility of learned information) are important process 
mechanisms involved in the use of interventions that support learning and conceptual change 
(Hidi & Renninger, 2006; Hulleman & Harackiewicz, 2021; Hulleman et al., 2010; Seyranian et 
al., 2023). Belief factors, such as epistemic dispositions—people’s relatively stable beliefs about 
knowledge and processes of knowing—are also thought to predict explicit engagement with new 
claims (Lombardi et al., 2016; Richter & Maier, 2017; Stanovich & West, 1997), and potential 
for conceptual change (Emlen Metz et al., 2020; Thacker, 2023, 2024; Thacker & Sinatra, 2022). 
Emotional factors are also hypothesized to direct learners’ explicit attention to plausibility 
appraisals (Lombardi et al., 2016); for example, epistemic emotions—emotions that arise during 
learning, such as surprise and curiosity—can drive attention and mediate motivational, affective, 
and learning processes (e.g., Jacobson et al., 2021; Linnenbrink, 2007; Muis et al., 2018; Thacker 
et al., 2020). As such, the warm models of conceptual change (Dole & Sinatra, 1998; Lombardi 
et al., 2016) assume that emotion, motivation, epistemic dispositions are mechanisms that 
support conceptual change. Further, group-level socioemotional regulation can sustain or 
amplify these mechanisms (Lobczowski et al., 2021b). For example, if a group collectively 
reappraisses frustrations about complex climate data as a shared challenge, individuals may 
remain more motivated to reconcile discrepancies and engage in deeper conceptual analysis. 
Such findings align with the propositions that warm constructs, when managed collectively, can 
drive more robust conceptual change.  

Reconciling Conceptual Change with Data Literacy Frameworks 
Conceptual Change from Quantitative Data 

Across all models discussed so far, novel information catalyzes cognitive, affective, and 
motivational processes that increase potential for conceptual change. How might things change 
when that information is quantitative? Are there particular challenges people encounter when 
evaluating and interpreting quantitative data and data visualizations? Theory on magnitude 
knowledge and numerically driven inferencing suggests that, indeed, some people may require 
support in making sense of numbers they are presented with, and that emphasizing specific data 
literacy skills may facilitate sensemaking processes. 

Magnitude Knowledge. Making meaning of number magnitudes is considered to be a core 
competency in mathematics and science and involves several skills that develop over time 
(Booth & Siegler, 2006; Cheuk, 2012; Sasanguie et al., 2012; Siegler & Booth, 2004; Siegler & 
Opfer, 2003). Siegler’s (2016) Integrated Theory of Numerical Development provides an 
explanation for how this development occurs, positing that people develop accurate 
understandings of number magnitudes and their relationships as they connect numbers (e.g., 
representing rising temperatures) to the things that those numbers refer to (e.g., global climate 
change). As learners develop, they learn new ways to make meaning of numbers by connecting 
and comparing them to other numbers, ideas, and representations through processes of 
association and analogy, both of which are activities that are considered crucial for both 
mathematical and scientific learning (Siegler, 2016). Yet, while this theory offers useful insight 
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into how people coordinate meaning and number, one consideration left out of this perspective is 
when real-world magnitudes refer to socio-political issues. For example, what happens when 
magnitudes point to real-world issues, such as disproportionate access to ecosystem services 
across an urban landscape? We seek to develop a model that incorporates learners’ experiences 
of strong emotions that can influence how they incorporate new numerical insights. An initial 
step in this direction is to account for the role of learners’ attitudes and beliefs. 

Numerically-Driven Inferencing. Numerically-driven inferencing (NDI) is a framework of 
conceptual change that investigates how peoples’ understanding of numerical information is 
connected to their knowledge, attitudes, and beliefs about larger issues (Ranney et al., 2001; 
Thagard, 1989). Rather than asking someone their stance on particular issues, one would ask 
what they would prefer the numbers to be. Numbers are thought to be the “tip of the iceberg” in a 
person’s thinking, and are connected with beliefs, attitudes, and conceptions in such a way to 
bring “coherency” to their worldview (Ranney & Thagard, 1988; Thagard, 1989). NDI 
operationalizes conceptual discrepancies in terms of the differences between estimates of 
numbers and their actual values and conceptual change in terms of changes observed in 
individuals’ re-estimates and number preferences after reading new information (Ranney, 2001; 
Ranney & Thagard, 1988). According to NDI, numerical evidence that is critical, germane, and 
credible will catalyze conceptual change (Ranney et al., 2001; Ranney & Thagard, 1988). NDI 
also posits that the emotion of surprise plays a central role in learning from novel statistical 
information, it is elicited when an individual encounters discrepant information and is thought to 
lead to questioning and discovery (Munnich et al., 2007; Thagard, 2005). Beyond individual 
surprise, evidence shows that groups may collectively navigate or dismiss surprising statistics 
depending on their ability to co-regulate emotions (Lobczowski et al., 2021a; Vea, 2020), 
suggesting that NDI processes might be amplified or stalled by group-level emotional dynamics. 

NDI and Numerical Development theories have some commonalities with the CRKM. They 
assume that conceptual change is initiated with exposure to discrepant information, leading to 
revision of knowledge and beliefs. The models also assume that knowledge, attitudes, and beliefs 
are interconnected, and in the case of NDI, incorporates emotion (surprise) and message 
characteristics. However, unlike the CRKM, the NDI framework and other models leave out 
important learner characteristics (e.g., motivation and engagement) and message characteristics 
(e.g., plausibility and comprehensibility). It is precisely these properties that we believe deserve 
attention. Indeed, we believe that understanding how people make sense of quantitative data 
requires considering the confluence of motivational, emotional, and cognitive properties—while 
at the same time considering the particularities of the data that they are learning from. 
Data Literacy Models (and What Conceptual Change Models can Gain From Them) 

We believe that literature on data literacy and statistical literacy offer strengths for inclusion 
in an integrated model of data literacy for conceptual change. Though there is no consensus on a 
definition, the term “data literacy” can be defined as the statistical competencies, methods, and 
techniques that facilitate decision-making (Gould, 2017). Because decision-making with data can 
be complex, data literacy frameworks often include many interrelated core competencies that 
range between about 5 to 20 different categories. Such data literacy frameworks often include 
competencies such as understanding, acquiring, reading, interpreting, evaluating, managing, 
visualizing, and using data (Börner et al., 2019; Carlson & Johnston, 2014; Kim et al., 2023; 
Prado & Marzal, 2013; Ridsdale et al., 2015), which are critical for driving advancement and 
insight in fields of science more broadly (Qiao et al., 2024). Prompting students to express how 
the data makes them feel can open emotional pathways that lead to an individual or collective 
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openness to deeper data analysis and processing (Herrick et al., 2025a, Herrick et al., 2023).  
Research on learning with data visualizations also offers ideas that may improve conceptual 

change models. Advances in the study of visualizations for STEM learning suggest that imagery 
has potential for helping students to ground abstract concepts in perceptions of scientific 
representations (Schwartz & Hiezer, 2006). There are a number of properties of data 
visualizations that are related to their efficacy for learning and communicating science content. 
For example, according to the Data Visualization Literacy Framework (DVL-FW), different 
types of visualizations can be designed to fulfill information needs of the learner, and each 
visualization type requires specific skills for interpreting them (Börner et al., 2019). According to 
this framework, a central process required to interpret data from visualizations is translating 
relevant problems of interest into problems of data. That is, before acquiring, analyzing, and 
visualizing data, individuals must first understand how the data relates to a relevant situation. As 
such, to improve students’ interpretation of data visualizations, they may need support in 
translating real-world situations and problems into data. However, at the same time, research also 
suggests that data visualizations revealing local phenomena can evoke anger or worry within 
groups which in turn influences how students scrutinize or accept the underlying evidence (e.g., 
Phillip et al., 2016). 

In sum, the data literacy skills identified in the literature offer important nuances and 
affective considerations that might be integrated into warmer models of conceptual change. 
Specifically, when considering the comprehensibility of data, data-literacy research offers 
specific data interpretation skills and critical literacy skills that might be applied to initially 
interpret them. For example, some models consider key properties of data and/or how it is 
visualized (such as data scales, analyses, graphic symbols, and how variables are visualized; 
Börner et al., 2019; Shaw & Hoeffner, 2002) and the mathematical skills learners must acquire to 
comprehend them (such as proportional reasoning, understanding of conventions of diagrams,  
Börner et al., 2019; Cromley et al., 2013; Shaw & Hoeffner, 2002; Vahey et al., 2012). An 
implication of this research is that it offers useful principles to take into account when presenting 
data to support student comprehension of data and data visualizations—such as, by reducing 
working memory demands, avoiding three dimensional graphs, using multiple formats to 
communicate data, and helping craft a narrative around what the data communicates.  

While these models offer useful tools to support comprehension, other models of data 
literacy offer more in the way of promoting critical data literacy skills. For example, Rubel et al. 
(2021) identify three key skills needed to critically read properties of data: formatting 
(questioning what and how data is quantified), framing (questioning relationships depicted and 
visualized), and narrating (questioning the stories authors tell). Other models, such as Weiland 
(2017) consider both critical reading of data and critical writing of data. Critical writing of data 
centralizes student agency and attends to critical statistical literacies such as to encourage 
students to identify untold stories, statistically investigate and resolve sociopolitical injustices, 
and use statistical investigations when communicating and arguing efforts to broad audiences for 
a more just world. Integrating emotional processing into these critical readings can further 
empower students to question, react to, and potentially reframe data narratives that evoke strong 
affect, ensuring that frustration or anger become opportunities for more rigorous engagement 
with data. Focusing on emotional awareness can help educators anticipate and guide the affective 
responses that arise when students confront unsettling or surprising data (Ojala, 2023). 

In sum, while there are many useful data literacy and critical data literacy frameworks that 
exist in the literature (e.g., Qiao et al., 2024; Rubel et al., 2021; Vahey et al., 2012; Weiland, 
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2017), currently none take into account motivational or affective constructs that are crucial in 
understanding the unique challenge of preparing students with skills needed to make sense of 
data related to socio-scientific topics such as climate change. Conversely, educational 
psychology models for socio-scientific learning (e.g., Dole & Sinatra, 1998; Lombardi et al., 
2016; Sinatra & Hofer, 2021) rarely incorporate data literacy or the justice-centered perspectives 
crucial for understanding climate impacts (Morales-Doyle, 2024). Our theory of Data Literacy 
for Conceptual Change attempts to reconcile these perspectives by foregrounding both 
individual-level and collective socioemotional processes that drive whether or not learners 
ultimately revise their prior conceptions. 
The Data Literacy for Conceptual Change Model (DLCC) 

The DLCC positions data literacy skills identified in the mathematics education literature in 
terms of models of scientific conceptual change. Notably, our model explicitly assumes that key 
critical data literacy skills (e.g., such as proportional reasoning, formatting, framing, reading, 
writing, and narrating data context and visualizations; Rubel et al., 2021; Vahey et al., 2012; 
Weiland, 2017) serve to help students comprehend and make personal meaning of data, and also 
intersect with the affective dimensions (e.g., motivation, emotion, and beliefs) that promote 
conceptual change at the individual level. Incorporating affective pedagogical goals from 
mathematics education (Kokka, 2022), which emphasize the emotional dimensions of learning 
about issues of injustice, the DLCC model adapts such goals for science learning with special 
emphasis on supporting students’ emotional processing of climate data (Herrick et al., 2025a).  

Namely, our model assumes that the format of data and data visualizations predict learners’ 
initial framing and perceptions of the data (in terms of its validity, coherency, compellingness, 
and comprehensibility), which then predicts learners’ processing of the plausibility of scientific 
ideas, claims, and explanations represented by the data (including how emotional reactions can 
be co-regulated within groups), and ultimately learners’ negotiation of whether to adopt such 
scientific conceptions at the individual level. More specifically, we assume that plausibility 
appraisals are more thoughtful and explicit depending on learners’ motivational and affective 
states, and more explicit processing is associated with higher likelihood for conceptual change. 
Lastly, we propose that group-level discourse can prompt students to negotiate and reconsider 
the plausibility of scientific claims, engage in critical re-readings of scientific ideas, or even re-
write data and narratives. In this way, the DLCC acknowledges that conceptual change emerges 
when individual cognitive conflict and motivational factors converge with collaborative 
emotional support and critical data literacy skills. The model pertains across socio-scientific 
topics, with special applications of data literacy for climate change teaching and learning, given 
that the evidence for this model stems from this topic which we elaborate on in the next section.  

Figure 1: An Illustration of the Data Literacy for Conceptual Change (DLCC) Model 

 



8 

Evidence for the DLCC with Applications for Climate Change Learning 
Evidence supports relationships posited in the DLCC. For example, engagement with climate 

change numbers in game-based learning settings can support conceptual change and highlight 
relevant relationships posited in the DLCC. Namely, prompting secondary and undergraduate 
students randomly assigned to estimate key climate change numbers before being shown the 
consensus value improved their climate change knowledge compared with a control group by 
about a third of a standard deviation (Ranney & Clark, 2016; Thacker 2023, 2024; Thacker & 
Sinatra, 2022). Additional qualitative and experimental evidence demonstrates that these learning 
outcomes are bolstered with targeted support of proportional reasoning strategies, conventions 
around interpreting number-line data visualizations, and compelling and contextualized data 
narratives (Thacker, 2023; Thacker et al., 2024). Further, these efforts to support data 
comprehensibility, validity, and compellingness which promoted student learning were found to 
be moderated or mediated by learners’ adaptive beliefs about knowledge, positive emotion, and 
motivational factors (Thacker, 2023, 2024; Thacker et al., 2024; Thacker et al., 2025). These 
studies reveal the importance of attending to both mathematical and scientific learning properties 
when designing instruction and begin to illustrate the benefits of intentionally mitigating 
negative emotion and climate hopelessness when discussing climate change (see Stoknes, 2015). 

Indeed, explicit attention to learners’ emotional responses can bolster students’ engagement 
with climate-related data and support conceptual change. For example, in Herrick et al. (2025a), 
teachers led brief, repeated Community Science Data Talks (CSDTs)—a pedagogical tool that 
integrates traditional data literacy skills with affective processes around locally relevant climate 
impact data (e.g., data depicting disproportionate tree canopy coverage in a city) and prompt 
students to share how the data made them feel. This invitation opened “emotional pathways” that 
encouraged learners to share personal experiences, express surprise or concern, and collectively 
process emotions toward curiosity and constructive hope around the implications of the data they 
examined (Herrick et al., 2025a, 2025c). On a practical level, CSDTs demonstrate two pivotal 
strategies for data literacy around local socio-scientific topics (1) structuring small, regular, 
open-ended data-discussion routines that highlight learners’ sense of place and (2) prompting 
students to narrate their emotional responses to support the technical elements of their data 
interpretation. By weaving affective dialogue into data literacy instruction, teachers create a 
shared sense of urgency and curiosity around local climate impacts, which support the DLCC 
model’s emphasis on individual learners revisiting and revising their prior conceptions.  

Principles For Future Scholarship Areas of Research 
While the empirical research is relatively conclusive in demonstrating that levers improving 

students’ comprehension of data is linked to motivational and learning gains, there are several 
factors that need more research. Namely, educational psychology and mathematics and science 
education have complementary strengths that could be leveraged more effectively through cross-
pollination of ideas and methods. On the one hand, data literacy research can more frequently 
consider affective and socioemotional dimensions of student learning (emotion, motivation, 
attitude), including how group co-regulation of emotion fosters or hinders deeper analysis of data 
at the individual level. On the other hand, conceptual change research could do a better job of 
incorporating critical data activities, specific skills needed to make sense of data, and especially 
in data depicting localized socioscientific topics. Ultimately, increased collaboration and 
partnership among educational psychology, math, and science education research would only 
lead to improved integration of data-literacy research and affective dimensions of learning that 
promote conceptual change. 
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